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16. AWstract

This final report presents results obtained from an analysis of multi-
channel synthetic aperture radar (SAR) data obtained from imaging flights over
The SAR system operated simultaneously at 3 cm and 23 cm
wavelengths, with two orthagonal-polarization receivers, horizontal and verti-
cal,

for each wavelength.

Two SAR data sets were used, one from sea ice test sites in the Beaufort
with data flights conducted during March 1979 as a part of the

Canada SURSAT program, and the other data obtained during March 1977 as a part
of the Canadian SAR-77 program conducted in Labrador, Newfoundland.
truth information was provided by consultants from INTERA, Ottawa, Ontario,

Canada, for the Beaufort Sea sites and from REMOTEC, St. John's, idewfoundland,
Canada, for the Labrador sites.

The SAR data were converted into digital image format and four basic
measurements made on the data from each test site:
deviation, 3) histogram, and 4)relative power scans at constant range lines.
The results are presented in several formats:
versus ice type, 3)coefficient of variation, and 4) two measures of the nolari-
Relative values of backscatter coefficients for several ice types
are compared, but absolute values cannot be obtained.

1) mean value, 2) standard

1) cluster plots, 2) variance

Ground

(over)

sea

» Words

synthet1c aperture radar (SAR)
remote sensing

ice

X-band, L-band
digital and statistical analysis
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15. Abstract

Imagery of each of the SAR channels are included along with ground
truth reports. Conclusions and recommendations for additional work are
also included.
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DETERMINATION OF BACKSCATTER CHARACTEKISTICS OF SEA ICE
USING SYNTHETIC APERTURE RADAR DATA

1
INTRODUCTION

This final report summarizes research performed for the Office
of Naval Research (ONR) Arctic Science Program. The report covers
the reporting period of 1 July 1979 to 31 August 1980.

The objectives of this research effort were (1) to determine the
backscatter characteristics of sea ice using data obtained from an
X~ and L-band SAR system and (2) to correlate these backscatter char-
acteristics with various ice types to determine possible signatures
for ice classification. Both deterministic and statistical measures

were investigated for classification signatures.

The microwave imaging radar system used in this program provides
several very desirable capabilities for the remote sensing of ice.
These include: (1) very large area coverage, (2) day-night and near-
ly all-weather operations, (3) multiple operating channels (wave-
length and/or polarization selection), (4) near-real-time availabil-
ity of output imagery, and (5) an illumination source which is a part
of the sensor,

For extremely large area coverage, a very wide swathwidth capa-
bility is required*. Operation from a spacecraft provides the op-
timun geometry for wide area coverage; operation from an aircraft
can provide ceoverage over approximately 40 km swaths and, with dual
systems, can provide this coverage on both sides of the vehicle; this {
could also be done in spacecraft systems, providing data link along
with sufficient weight and power are available. It is clear from a

*Multiple-swath operating techniques have been suggested in vari-
ous reports by ERIM and others. These techniques include multiple
antennas, dual-feed antenna, and multi-frequency operation [1].

{
A
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consideration of the SAR imaging geometry that the viewing or inci-
dence ang]e* from a radar system in space will be very steep (15°
< 8 < 45°). On the other hand, for a radar system in an air-
craft, wide swath operation will require imaging at shallow incidence

angles, say 30" < e; < 85°.

For both aircraft and spacecraft applications, information is
required with which to determine the best operating wavelength,
polarization, and angle of incidence for the classification of vari-
ous ice types. Also, an optimun single frequency must be selected
for best discrimination, in both steep and shallow inciuence angle
operation. Finally, a decision must be made regarding the selection
and advantages (in terms of discrimination capability) of multi-
channel radar systems. The data set utilized in this initial study
had advantages in that four channels of radar imagery are available
(3 cm and 23 cm, both HH and HV polarization). Some comparisons can
pe made with data obtained from other microwave sensors (such as
scatterometers) in order (1) to predict the performance at wave-
lengths different from those used in operating imaging radars and
(2) to calibrate the radar data.

The important SAR system operating parameters are the wavelength,
incidence or depression angle, polarization, and resolution. It
would be very desirable to have a multi-channel SAR that has absolute
calibration capability for demonstration experiments such as those
considered here., The data utilized in this study are not calibrated.
Relative comparisons of backscatter values between channels cannot
be made due to unknown system constants (such as system response,
antenna gain, and processor variations). Comparison on a single
channel can be made, as described later, by selecting test areas at
constant depression angles.

*Incidence angle is defined (in the usual manner) as the angle
between the vertical and the direction of the incident radiation.
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It is hoped that this report can be used as a SAR data handbook
of ice signatures for use by the ICESEX and ICE~RADARSAT Science
Working Groups.
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2
SUMMARY

Two multi-channel SAR data sets obtained from imaging flights
over two different sea-ice areas were analyzed. Each data set in-
cluded four SAR channels: 3 cm and 23 cm wavelengths were trans-
mitted with horizontal polarization; both horizontal and vertical
receiving channels were provided for each wavelength, giving a total
of four data channels. The data flights were conducted in the Beau-~
fort Sea area during March 1979 as a part of the Canadian SURSAT
project and off the coast of Labrador in February 1977 as a part of
the SAR-77 C-CORE Canadian East Coast ice project. Each data set
was studied with the aid of consultants who were involved in ground
measurements during the two projects. Test sites were selected so
as to include several different ice types; 15 sites from the Beaufort
Sea area and 10 sites from the Labrador area were selected. Ice
types included medium multi-year floes, multi-year pieces, new ice,
and first-year ice; the latter two were both with and without snow
cover. In addition, SAR data of icebergs and ships were used.

The data reduction steps used were as follows: First, four-
channel data from each test site were digitized. Then, four basic
measurements were made to characterize the data: (a) mean value of
each signal, (b) standard deviation, (c) histogram of each channel,
and (d) constant-range transects of the test sites. Measurements
were made for three values of spatial resolution (6, 18, and 30 m
[2]) and incidence angle values between 40° and 83°.

Using results from the basic measurements, data are presented in
five formats: (1) cluster plots of like versus orthogonal polariza-
tions for each wavelength, (2) standard deviation versus ice types,
(3) coefficient of deviation (standard deviation divided by mean),
(4) polarization ratio (HH mean divided by HV mean), and (5) polari-
zation ratio (HH coefficient of deviation divided by HV coefficient
of deviation).

PRECEDING PAGE BLANK-NOT FILMED
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Analysis of the cluster diagram showed that, for the limited sam-

ples available, the XHv channel discriminated the multi-year ice
best, particularly for steep incidence angles. Other ice types did
not appear to cluster; this is particularly true for L-band. As ex-
pected, standard deviation values decreased with increasing resolu-
tion for each data set. In general, for 6-m resolution, the standard
deviation and mean value increased with increasingly rough ice areas
at X-band. The presence of ice ridges tended to increase the mean
and standard deviation, The coefficient of deviation for both XHH
and LHH was larger for both first-year ridged areas and multi-year
riudged areas, compared with that from similar areas without ridges.
wet snow-covered ice (Labrador data) showed less signal return at
L-band than at X-band.

The dynamic range of signal values was greatest (16 d8) for
XHV trom the multi-year site, while the minimum dynamic range was
3 ds for Xy Hpys and Ly, from Site 1 (first year). Compari-
son of the relative value of backscatter power from different ice
types derived from SAK data with corresponding 9, values obtained
trom both ground and airporne <catterometer data indicates very sim-
ilar results, Tne comparisceas were made for first-year versus multi-
year at both steep (4U°) and snallow (83°) incidence angles; here,
SAK and scatterometer relatire values agreed within about 1 dB. Sim-
ilar results were obtained from new and first-year ice sites. Since
tne SAR data were not calibrated, absolute comparisons could not be

madge.

Mean values for Xy Progressively increased from (1) first-
year to (2) first-year with ridges to (3) multi-year to (4) multi-
year with ridges. Tnhe polarizat.on ratio decreased for this ordering
of ice types. Measurements of signal-to-clutter ratio were made for
icebergs in pack ice and for ships in ice and in open water. These
data are used to determine probability of detection.
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The above results were obtained using only a few (one, in some

cases) samples of a given ice type. It is recommended that (1) the
data set be used for measurement from additional sites containing

similar ice types to verify the observations, (2) this data set be
l utilized further by comparing relative backscatter values for large
incidence angles (40° < o < 83°) in order to extend the values ob-
tained with the airborne scatterometer, (3) multivariant analysis
techniques be applied to these data sets, and (4) if data are avail-

able, sea ice imaging be analyzed using all digitally recorded and
processed SAR signals.
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3
SYNTHETIC APERTURE RADAR DETERMINATION OF
BACKSCATTER CHARACTERISTICS OF SEA ICE

A summary of the complete data handling approach 1is given in
Figure 1. The first steps are the selection of data, correlation
with ground truth, and digitization (as indicated at the top of the
figure); these give the selected data in CCT format. Using the dig-
ital data, three analyses are then conducted: (1) measurements of
selected parameters "to characterize data, (2) constant radar range
scans, and (3) ship and iceberg detection. The results from each
analysis "path" are summarized in "conclusions." These conclusions
then serve as inputs for: (1) understanding the SAR imaging mecha-
nism of sea ice, (2) tne design of SAR systems for ice surveillance,
and (3) single- or multi-channel classification algorithms using SAR
data.

3.1 DATA SET

Tne multi-channel SAR data set included imagery obtained from
two experiments conducted in Canada and supported by the C(Canadian
government with joint support/participation by the U.S. government.
The first data set considered comes from the Surveillance Satellite
(SURSAT) SAR experiment conducted in the Beaufort Sea during March
1979. This experiment was a part of the extensive SURSAT microwave
program conducted by Canada during the period Fall 1977 to June 1979,
Data from a total of 15 areas were selected from this data set.

In addition, data were utilized from the SAR-77 ice program,
jointly sponsored by Canada and the U.S. through the Centre for Cold
Oceans Resources Engineering (C-CORE), Memorial University (Newfound-
land). This experiment was conducted during the winter of 1977 off
the coast of Labrador, Newfoundland; data from ten areas were
selected for analysis. Selections were based on (1) the variety of

9 PRECEDING PAGE BLANK-NOT FILMED
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FIGURE 1.
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x ice types, (2) the ground truth data available, and (3) the quality
of the SAR data.

The various ground truth teams selected several sites for exten-
sive ground measurements. Particular SAR data sets, which included
four-channel signal records of those sites, were selected with the
help of a consultant from INTERA, who was a member of one of the
ground truth teams. Data from two SAR flights were selected; during
one of these flights, the SAR operating parameters were adjusted so
that SAR imagery at steep incidence was obtained; this flight were
conducted on 16 March 1979, Data obtained on 18 March 1979 was
imaged at shallow incidence angles.

The selected imagery from each test site was converted to CCT
digital format using the ERIM image dissector facilities [3]. Analy-
sis was then conducted on the CCT image data using the ERIM digital
computer facilities.

Most of the test sites selected are located in the Beaufort Sea
area., Site 1 is a nearshore site having shorefast ice, while Site 2
is located 200 nmi north and includes multi-year ice. A summary of
the ice types identified at each site is given in Table 1. A de-
tailed discussion of the ice characteristics and classification is
given in the ground truth report provided by the INTERA consultants
and included as Appendix A.

The test areas used from Site 2* were selected so as to be at
a nearly constant depression angle in order to normalize out correc-
tions due to range and antenna gain. This provided two data sets,
one at a steep incidence angle of approximately 40° and the other at
a shallow incidence angle of approximately 80°. Four data sets were
selected from the nearshore site (B1), two at each incidence angle
and range.

*Site 2 is so designated by the Beaufort analysis team. This
site is referred to as B2 in this report.

1
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ZR'M RADAR AND OPTICS DIVISION

SAR data from several additional sites were selected from the

imagery obtained during the SAR-77 program. These data, obtained
during February and March 1977 off the Labrador Coast, are for shore-
fast ice near the town of Hopedale, Labrador. A summary of the ice
types identified at the Labrador sites is given in Table 2. A com-
plete description of the test sites is given in the ground truth re-
port provided by consultants of the REMOTEC Corp., St. Johns, New-
foundland and included as Appendix B.

Also collected as part of the SAR-77 program were four-channel
data of both a ship and an iceberg in a surrounding ice field. Ex-
cellent surface truth was provided from the ship at the time of the
overflight.

3.2 SITES

The radar images corresponding to the four-channel data analyzed
in this report are shown in Figures 2 through 9. In the Beaufort
Sea, data were collected at both steep and shallow incidence angles
for the two areas. At Hopedale, only one incidence angle was used
at each of the four areas. On each of the images is a large area
marked by a dashed line that represents the area digitized for com-
puter applications. The smaller squares within this larger area are
where the computer analysis was actually performed. Although care
was taken in locating these small areas, some are undoubtedly contam-
inated by unwanted ice types. Also, it was assumed that the ice did
not change during the day between flights over the Beaufort Sea.

Figures 2 and 3 contain the shallow and steep images of Beaufort
area 1, respectively. This area is characterized by first-year ice
with snow toward the left of the image, and new ice without snow to
the right.

Figures 4 and 5 are the images for Beaufort area 2, again for
both shallow and steep incidence angles, respectively. This site
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ER'M RADAR AND OPTICS DIVISION

contains a wide variety of ice, ranging from young ice to multi-year
with ridging. Also note that Site B2-A is not contained in the steep
images; this 1is due to the digitized areas not being exactly
coincident,

Figure 6 contains the imagery from Hopedale area 1. Looking from
left to right at the three rectangles, the ice goes from first-year
to new ice with a shear zone between, which is characterized by
rafting.

Figures 7 and 8 show the imagery from Hopedale area 2. Here we
attempted to locate a refrozen lead amidst first-year ice. This re-
frozen lead can be seen in the L-band imagery as H2-B, but cannot be
located in the X-band data.

Figure 9 is the imagery for Hopedale areas 3 and 4. This region
is basically first-year ice with some ridging and floes. Due to the
digitized areas not being exactly coincident, site H3-B could not be
located in the L-band data.

3.3 DATA REDUCTION

The large areas outlined in Figures 2 through 9 were digitized
at ERIM and computer compatible tapes (CCTs) were produced using the
ERIM hybrid optical-digital processor [4]. These digitized areas
were then subsetted into specific regions of interest by ice type

for statistical and other types of computer analysis performed on
the University of Michigan Amdahl system.

The advantages of using a digital computer as opposed to photo-
graphic products for image analysis are numerous. Radar sensors fre-
quently operate with a range of return brightnesses spanning 50 dB.
Much of this dynamic range can be preserved in radar images using
pulse compression techniques implemented by digital or optical proc-
essors. However, when a radar image is recorded on photographic
emulsion, the dynamic range is compressed. The photographic emulsion
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ER'M RADAR AND OPTICS DIVISION

typically proviges a 20 dB dynamic range within which only a portion
is linear, The resulting brightness compression in radar image pho-
tographs may cause many graduational details of radar image intensity
to be 1lost. By going to digital recording, a dynamic range of
approximately 40 dB is achievable. This represents a 20 dB improve-
ment over the dynamic range typical of an image recorded directly on
film. Digital computers can then be programmed to perform a variety
of different measurements. Also, by using the digital approach, much
of the subjectiveness of a manual interpretation is removed.

Initial computer processing of the CCTs consisted of subsetting
small regions of differing ice types from each of the large digitized
areas. Then, for each of these smaller areas, the mean, standard
deviation, and number of samples were calculated for 6, 18, and 30 m
resolution. Table 4 contains these results and also lists the per-
tinent processing parameters (e.g., laser power) that were used to
normalize the results for more direct comparison.

Also, for each measured mean value and standard deviation, a his-
togram was drawn., Three other distributions are superimposed on each
nistogram corresponding to normal, log normal, and gamma. A repre-
sentative example is shown in Figure 10 with others included as
Appendix C.

The measured means and standard deviations produced above were
used to form cluster plots, as shown in Figure 11. This is simply a
plot of each mean and standard deviation as a function of polariza-
tion. It is a very useful tool for deciding which band-polarization
combination provides the best discrimination of a specific ice type.

Isorange transects were also taken for the complete length of
the digitized areas in the Beaufort Sea. By using a constant-range
approach, system effects (e.g., antenna gain, recorder response,
power losses, etc.,) can be neglected. This process consisted of ex-
tracting five adjacent lines of data along constant-range elements;
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these were then averaged to form a single line which, in effect,
smoothed the data in the range dimension. Next, the data were con-
verted to dB and smoothed using a variable-aperture sliding-window
technique. These data were then plotted; an example is shown in
Figure 12. It should be noted however, that processing effects
(e.g., laser power, etc.) and the effects of differing incidence
angles have not been removed at this point; therefore, direct compar-
isons should only be made between those shown plotted together.

As mentioned previously, four-channel data of a ship and iceberg
encompassed by an ice field were collected as part of the SAR-77 pro-
gram. These data were acquired in digital form, and were processed
in order to better understand the ship-ice and iceberg-ice
relationships.

Initial digital processing of these data was performed on the
ERIM ARIES installation and consisted of:

(1) extracting values of 20-line by 20-point subsets centered
on the ship, iceberg, and surrounding clutter (ice),

(2) averaging* these values,
(3) converting to dB, and
(4) calculating signai-to-clutter ratios.

For comparison purposes, this was also done for a ship surrounded by
non-frozen water. Also, an attempt was made to graphically portray
the ship and iceberg location. This consisted of:

(1) extracting values of 128-line by 128-pixel (192 x 192 m)
subsets at the ship and iceberg locations,

(2) averaging these subsets using a 2-line by 2-pixel window,
and then

*The ship and iceberg averages were defined as the average of
the highest 3 dB group of values.
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{3) producing plots of alternate lines of these smoothed data

using a perspective-view plotting system.

An example of this type of plot is shown in Figure 13.

3.4 DATA ANALYSIS APPROACH

The data from each test area selected are grouped into two sets
according to the basic incidence angle. Here, steep incidence angles
are defined to be in the range 30° < e; < 45" while shallow

angles fall in the range 76° < ®inc. < 83°. Four basic measure-
ments are made on each of the four channels of data to characterize

each set; these are:
(1) mean value (measure of received signal level),

(2) standard deviation (measure of the "roughness" or disorder
of the scene),

(3) histogram (distribution of received signal power), and

(4) constant-range-line image scans for relative comparisons of
packscatter power (this normalizes for range and antenna
response).

Measurements 1-3 were made for all three values of resolution.

These basic measurement results are given in Tables 3 through
21. Values obtained are used in several formats in order to deter-
mine trends or signatures to characterize the various ice types in-
cluded in the data sets. Data formats used are:

(1) cluster plots (mean values of like and cross polarization
channels for each wavelength), 1

(2) standard deviation of backscatter as function of ice type,

(3) coefficient of deviation (standard deviation divided by
mean),
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ERIM RADAR AND OPTICS DIVISION

(4) polarization ratio (HH mean divided by HV mean),

(5) polarization ratio (HH divided by coefficient of deviation
HV coefficient of deviation),

(6) signal-to-clutter ratios for ships and iceberg, and
(7) probability of detection of above ships and iceberg.

Each cluster plot presents the values of received signal return
at parallel polarization versus the signal received on the cross
{orthogonal) polarization channel for a given wavelength, The two
receiver channels on each wavelength (3 cm and 23 cm) are matched in
terms of overall transfer function so as to make comparison meaning-
ful. Normalization of all the digital records was carried out to
permit the measured digital values of received signal levels to be
compared. These normalizations are summarized in Tables 3 through
21. The SAR system does not include absolute calibration; therefore,
the measured values from receive channels at different wavelengths
cannot be compared. However, the cluster diagrams are given for each
operatiny wavelength to show the grouping or classification of the
received signal as a function of ice type. These classifications
can be compared to the response or received power level.

The standard deviation and the coefficient of deviation are pre-
sented in both tabular and graphical format as a function of ice
type. Both of these parameters give measures of the disorder or
roughness of the ice area, particularly the coefficient of deviation.
Comparison of these parameter values, as a function of ice type, pro-
vides a measure of relative roughness. Similarly, the histogram pre-
sents a distribution of the range or spread of values of radar cross
section included in the areas.

Depolarization is dependent to a large part upon the surface
roughness and the dielectric constant of the scattering material
(ice). This effect is indicative of the amount of multi-scatter and
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volume scatter (although depolarization can also occur from single
scatter interaction). Using the values of both polarization ratios,
these properties are compared as a function of ice type.
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4
RESULTS

Discussed in this section are the results produced by the variety
of different analyses and measurements performed during this study.
These include:

(1) interpretation of cluster diagrams,
(2) standard deviation-to-mean ratios,
(3) isorange scans,

{4) dynamic range measurements,

(5) relative backscatter values,

(6) histogram analysis,

(7) polarization ratios of both means and coefficients of
deviation,

(8) signal-to-clutter ratios of both ships and icebergs, and

(9) graphical display of ship and iceberg location.

4.1 CLUSTER DIAGRAMS

Cluster diagrams showing the signal amplitude received on each
of the four SAR channels for both steep and shallow incidence angles
are given in Figures 14 through 18. All of the results given in
these figures are for 6 x 6 m resoluticn data, except where otherwise
indicated. Results obtained from the Beaufort Sea area 2 are given
in Figure 14, The multi-year ice areas (B2-E, B2-1 and B2-F) are
seen to cluster with large signal return on the XHv channel, par-
ticularly for steep incidence angle (o, = 40°). Signal returns
at X-band from other ice types included in area 2 do not separate.
Also, it is clear, from the results shown, that signal returns at
L-band for the various ice types in area 2 cluster together for both
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steep and shallow incidence angles. Discrimination using L-band
SAR data only would appear to be very difficult, if not impossible.

Cluster plots of the received signal amplitude for the near shore
site (Figure 15, area 1, Beaufort), show little, if any, characteris-
tic separation as a function of ice type. Similarly, the SAR data
obtained from the Hopedale nearshore sites (Figures 17 and 18) clus-
ter  together  showing little indication of discrimination
possibilities.

As discussed previously, the measured standard deviation de-
creased for increasing resolution. This is illustrated in Figure 16
where cluster diagrams are given for the three values of resolution
(6, 18, and 30 meters) for the two X-band channels. These results
are to be expected, since larger resolution data are averaged over a
greater spectral area; this results in less spread in the variation
of radar cross section.

Some general observations can be made about the standard devia-
tion and mean values measured. The mean value tends to increase for
increasingly rough ice, particularly for shallow incidence angles.
For the HH channel, the standard deviation almost always increases
with operating frequency for both shallow and steep incidence angles
(standard deviation increases for 10 of 14 cases and decreases for 4
of 14 cases). For the HV channel, the standard deviation increases
with frequency for both shallow and steep incidence angles (it in-
creases for 11 of 14 cases and decreases for 3 of 14 cases).

For multi-year classification and based on the variety of ice

types for which data were used (Table 1), the X channel and a

steep incidence angle provide the best discrimin;?GOn. Also, for
multi-year ice, the XHH and xHV channels provide about equal
discrimination at shallow incidence angles. There appears to be min-
imum information available from the L-band channel for classification

of the ice types used in this study. A summary of all the measured
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]

mean values of received signal amplitude for site 2 is given in Fig-
ures 19 and 20 as a function of ice type. The curves are plotted in
monotonically-decreasing order of mean value.

4.2 STANDARD DEVIATION-TO-MEAN RATIOS

A coefficient of deviation can be defined as the ratio of stan-
dard deviation to mean value, of/u. This ratio, dependent upon reso-
lution, presents an indication of the spread in the values of radar
cross section of a given scene. Values of the ratio ofu calculated
for four ice types from area 2 are given in Table 22. The presence
of ridges in an ice scene tends to increase the standard deviation
of tne backscatter values. This is seen by comparing the values
given in Table 22 for first-year ice and multi-year ice with and
without ridges; for all cases shown, the ratio ofu is larger for the
ridged areas. Although quantitative measurements of the ice rough-
ness were not made (this should be included in future ice experi-
ments), information obtained from the ground truth data does indicate
tne ridged areas.

Values of the ratio o/u are given in Table 23 for the four test
areas as a function of resolution. As stated above, the mean value
is constant and the standard deviation decreases with resolution.
Table 23 shows that the relative values of the coefficient of devia-
tion for these ice types do not change with resolution., General ob-
servations regarding the coefficient of deviation o/u are summarized
in Table 24.

4.3 1SORANGE SCANS

A line scan at constant range was made through each of the two
Beaufort test areas for each SAR channel and for both shallow and
steep incidence; these are shown in Figures 21 through 28. These
data show the relative received signal level in dB as a function of
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TABLE 22
COEFFICIENT OF DEVIATION FOR FOUR ICE TYPES FROM AREA B?
g. O .
L—*for XHH m for LHH
Area Ice Type Steep ShalTow Steep ShalTow
B2-G First year 0.28 0.26 0.34 0.25
B2-D First year with ridges 0.35 0.61 0.52 0.47
| B2-F Multi-year 0.28 0.38 0.29 0.27
”l B2-E Multi-year with ridges 0.35 0.51 0.40 0.51
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B1-A
B1-B
B1-D
B1-F

TABLE 23
COEFFICIENT OF DEVIATION FOR FOUR ICE TYPES
FROM AREA B1 (SHALLOW INCIDENCE ANGLE)

RESOLUTION (M)

“HH “Hv
3 T8 30 3 18 30
0.35 0.21 0.166 0.31 0.16 0.112
0.37 0.22 0.16 0.33 0.189 0.14
0.58 0.44 0.37 0.39 0.27 0.21
0.35 0.29 0.25 0.28 0.16 0.124
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TABLE 24. SUMMARY TABLE OF COMPARISONS
BETWEEN MEASURED VALUES™*

geaufort - Area 1

B1-A 2 3, 4 2 1
B1-8B 1 2 3, 4 2, 5 1
B1-C 2 4 2 2
B1-D 3, 4 3, 4 4 4, 5 .
B1-E 2, 5 2, 5 2 4, 5 .
B1-F 1 1 2 3, 4 2, 5

Beaufort - Area 2

B2-A B2-B B2-C B2-D B2-E B2-F B2-G B2-H B2-1

B2-A

B2-B

B2-C

B2-D

B2-E 3 3
B2-F 1

B2-G 1

B2-H 3 3
B2-1 3 2 3 3

*CODE (for both HH and HV):

Similar for both wavelengths and incidence angles.
Similar for X-band, both incidence angles.

Similar for L-band, both incidence angles.

Similar for X-band, steep fncidence angles.
Similar for L-band, steep incidence angles.

OV N -
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position along the scan line. (A constant range line is scanned to
normalize all variations due to changes in range, incidence angle,
and antenna gain. Although range can be determined accurately and
corrections for variations in received power as a function of range
can be made, variations in antenna response as a function of inci-
dence angle are not at present known to any reasonable degree of
accuracy.) These data can be utilized to determine:

(1) the dynamic range of the received signal from each ice
scene,

(2) relative values of radar backscatter coefficients, and

{3) comparisons of like and cross polarization for the develop-
ment of possible discrimination algorithms based on

polarization.

The four ice types from the Beaufort Sea area 2, listed in
Table 22, are identified on the constant-range transects and given
in Figures 29 and 30. Several interesting characteristics of this
particular data set and ice types can be seen. In general, received
power (radar cross section) is minimum for first-year ice without
ridges and maximum for multi-year with ridges. Depolarization is
more complete for the multi-year with ridges area near the left-
center of the scan than it is for similar areas included elsewhere
in the scan. The reason for this is not clear, but perhaps addi-
tional detailed ground truth information regarding ridge heights,
dielectric constant, and roughness scale would help to explain these
effects. Since the depolarization is strongly dependent upon rough-
ness and dielectric constant, the polarization ratio HH mean/HV mean
may be a good indicator of these parameters. Also, a recent analysis
[5] has sugyested that {1) depolarization from surface reflection is
independent of depolarization due to volume effects and (2) volume
depolarization is only slightly dependent on incidence angle.
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Similar line scans for the Beaufort area 1 are given in Fig-
ures 31 and 32 for X-band. The boundary between the 15 cm young ice
and a meter of first-year ice covered with snow is inuicated by the
vertical dotted line. A 4 dB increase in received power (i.e., back-
scatter cross section) is obtained when traversing from the snow-
covered to the non-snow-covered areas.

4.4 DYNAMIC RANGE

A knowledge of the total dynamic range of the received signal
level expected for each particular region is important for system
design. These values are obtained from the constant range scans
given in Figures 21 through 28 and are summarized in Table 25 for
the Beaufort Sea sites. It is seen from the data in Table 25 that
the dynamic range of received power is greatest on the X-band chan-
nels from area 2 (multi-year region) at shallow incidence angles.
These values compare favorably with results obtained with the CCRS
13.3 GHz scatterometer during the same period from the same generai
area in the Beaufort {6]. The dynamic range of both areas 1 and 2
on the X-band channels decreases for a steep incidence angle; on the
L-band channels, the values are independent of incidence angle. 1In
addition, it was observea that the dynamic range measured will be a
function of resolution.

In the selection of an operating frequency for a radar dedicated
to ice surveillance, it is clearly desirable to take advantage of
the largest dynamic range response possible. For the measurements
made, this would be X-band HH (or HV) at shallow incidence angle.
[t should be pointed out, again, that a very limited set of param-
eters could be included for analysis within the scope of this effort
and that additional similar measurements should be made at other
viewing angles. '
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¥ TABLE 25
DYJAMIC RANGE OF RECEIVED SIuiAL (Id dB)
FOR BEAUFORT TEST SITES

Steep
X L
T
Site 1 3 4 9 3
Site 2 1 15 10 8
Shallow
X L
W W W
Site 1 9 3 3
Site 2 15 16 10 8
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4.5 KELATIVE BACKSCATTER VALUES

The relative values of radar backscatter, P were obtained

rec?
from the line-scan data for several different ice types. These mea-

sured differences,A,in backscatter values are given in Table 26 and

compared therein with differences a in quantitative values of 9,
measured for similar ice types. Note that these differences compare
very well. These results are significant in that they demonstrate

that quantitative o_ values obtained using ground-based instrumen-

0

tation [7, 8, 9] will give the same differential values of o, as

data measured with airborne SAR instrumentation.

A particular data set was selected (area 1, Beaufort Sea) to ob-
tain relative values of g, as a function of incidence angle. This
required that an estimate of the antenna response be made in order
to normalize the data. The error in these estimates is several dB
or more, but the general trend is shown in Figure 33. Corrections
made for differences in siant range are accurate because the range
can be measured from the radar data fairly precisely. For these par-
ticular cases, the "no snow" sites have greater % values. Note
that the ice thicknesses are different between the snow and no-snow

sites.

4.6 HISTOGRAM ANALYSIS

The ice clutter data considered in this report have been digi-
tized in such a way that a numerical value describing a given pixel
of clutter is proportional to its field strength, or the square root
of its power. The data in a given scene of interest (see Tables 3
through 21 for numbers of samples) are then formed into a histogram
(shown in the figures of this section and in Appendix C as dashed
lines) for which the mean yu and standard deviation ¢ are computed.
The density functions for three well-known distributions (normal,
lognormal, and gamma) are then constructed using these u and ¢ values
and superimposed on the histograms for comparison.
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Shallow
Area

B1-C

B2-F

Steep
B2-1
B2-E
B2-G

TABLE 26

RELATIVE VALUES OF BACKSCATTER FOR

First year

Multi-year

Multi-year
Multi-year
Smooth

VARIOQUS BEAUFORT SITES

SAR Scatterometer
Measurements Measurements [9 ]
Frec b o a
507 -24 dBm 6 dBm
6.4 dB
2209 ~-18 dB
8800 -5 dBm
9200 12.0 dB 11 dBm
729 -16 dBm
»
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The lognormal and gamma distributions are two distributions much-
used for theoretical discussions of clutter data. The gamma distri-
bution contains the chi-square distribution as a special case, and
in turn the chi-square distribution contains the Rayleigh distribu-
tion as a special case. A brief word concerning their form as used
in this application is in order.

The gamma density function is given by

v-1 _-aX

A
S a’x e » a,v >0, x >0,

l=]
#

a,v

0, x < 0.

The mean and variance of this distribution are

u = via, 02 = v2/a2

and so, since the parameters a and v can be uniquely expressed in
terms of mean y and standard deviation o, the gamma distribution can
be completely characterized in terms of its mean and standard devia-
m = (v - 1)/a. So,
an alternative characterization of the gamma distribution is in terms

tion. (The mode of the gamma distribution is x

of any two of u, o, oOr xm.) The parameter A denotes the area

under the histogram for a particular scene. If v = 1, the gamma den-
sity becomes a Rayleigh density, with u = o,

A e'x/°, x >0,
5 2

g]/o,](x)
0, x<0

The lognormal density function can be obtained by taking 20 log x,
where x ranges over the data set, as the independent variable of
a normal distribution. An additional modification must be made for
the mean and standard deviation of the distribution by taking them
to be the mean and standard deviation of 20 log of the data.* The

*The choice of the operator 20 1g has been made so as to deal
with data expressed in dB relative to some power level.
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special notation 420 1g and %20 1g is used to emphasize this
modification, where 1g (and log) refer to the common, or base 10,
logarithm, The resulting lognormal density function may then be
written as

20 2
Tn 10 A e-[zo 109 x-50141/205014

2n %201g
0, x < 0.

L{x)

x > 0,

"

Since tne mean and standard deviation describe the peak region
of the histogram, the characteristics of the "tails" of the distribu-
tions may, in some situations, be indicative of unique ice types.
Therefore, in addition to the utilization of the mean and standard
deviation for classification, the complete histogram was also
considered.

A comparison of histograms for different ice types within the
same area reveals the ability to discern multi-year ice from first-
year, and also points up a problem in differentiating first-year from
youny ice. For example, a comparison of the histograms for areas
B2-F (Figure 34) and B2-G (Figure 35), which contain multi-year ice
with ridging and smooth first-year ice, respectively, illustrate the
differences that are clear from the standard deviation and mean val-
ues. On the other hand, the areas B1-A (Figure 36) and B1-B (Fig-
ure 37), which contain first-year ice with snow and young ice without
snow, respectively, have nearly identical distributions.

For the cases considered in this investigation, there was not a
single example of classification based on the histogram alone. How-
ever, previous data [10] show that this approach is feasible and
should be considered in future studies; therefore, the histogram
should continue to be analyzed as a possible classifier of ice types.
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et

4.7 PULARIZATIUN RATIOS

As listed in Section 3.4, two multi-parameter measures utilizing
polarization ratios were investigated for the classification of ice
types. These measures are: (1) the ratio of the mean values ob-
tained for 1like and c¢ross polarization for each wavelength and
(?) the ratio of the coefficients of deviation for the like and
cross-polarization channels. These values have been calculated for
the four ice types from area 2 (considered previously in Section 4.2)
and are listed in Table 27.

The polarization ratio of mean values for the X-band channel,
steep incidence angle data set progressively decreases in value for
the four ice types, as shown in the table. This may be explained
qualitatively as follows: Based on ground truth data, the ice in-
cluded 1in these test areas became progressively rougher from the top
to the bottom of the list; increased depolarization should occur for
increasing roughness (at least up to some roughness scale). Further,
volume scattering becomes significant for multi-year ice, again re-
sulting 1in depolarization which may account for the rather sharp
change in the mean depolarization ratio between first year and multi-

year ice.

A comparison of the polarization ratio of the coefficient of
deviation for steep and shallow incidence angles at X-band shows a
change in response for the four ice types listed in Table 27. The
reason for this is not now known; however, the fact that this param-
eter is sensitive to variations in incidence angle would indicate a
potential application for classification when the interaction phenom-
enon is understood.

For the analysis of the polarization ratio for all ice types in
area 2, the calculated ratios have been plotted in monotonically-
decreasing order. These data are given in Figure 38 for X-band and
in Figure 39 for L-band. Since measurements of surface roughness
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Site  ShalTow

B1-D
B1-C
B1-E
B1-f
B1-A
B1-B

1
1
1
1
1
1

a
[“]XHH
o
[ M ]XHV
>1te sSteep
.48 BI-A 1.5
.40 B1-B 1.5
.3 B1-C 1.3
.25 B1-E 1.15
13 B1-F 1.07
.12 B1-D 1.0

TABLE 28
VALUES OF THE POLARIZATION RATIO FOR THE COEFFICIENT
OF DEVIATION FOR AREA B1
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Site Shallow

B1-F
B1-D
B1-A
B1-B
B1-E
B1-C

1.9

1.76
1.73
1.53
1.
0.

Site Steep

B1-C
B1-A
B1-8
B1-D
B1-E
B1-F

2.75
1.2

1.08
1.08
0.96
0.9
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scales and electrical properties dare not available, it would be dif-

ficult to use these results to model the ice. However, this approach
should be included in future analysis efforts.

Calculated values of the polarization ratio for the coefficient
of deviation for the nearshore site test areas are given in Table 28.
The values for each data set are ar .nged according to decreasing
value of the ratio. Note that the ratio for snow-covered first-year
ice (area B1-D) is greater than that for no-srow young ice (area
BI-F) for the shallow (e; = ~ 82.5") X-band data; however the re-
verse is true for shallow L-band data. Values calculated from the
inc "~ 77.5°) show the ratio for the
two to be about equal using both L- and X-band data. For steep in-

other snow and no snow sites (e

cidence angles, both the X- and L-band data have similar ratio values

for the six sites.

Although the trends and relationships of the poiarization ratios
calculated from these data are very interesting to contemplate, it
is clear that additional examples must be analyzed before any signa-
tures can be verified.

4.8 SIGNAL-TO-CLUTTER RATIOS

As previously mentioned in Section 3.4, signal-to-clutter ratios
were calculated for both a ship and icebergs surrounded by ice, and
(for comparative purposes) a ship surrounded by water. These results
are summarized in Table 29. It can be seen that (generally] cross-
polarized X~-band discriminates the ship in ice and the iceberg the
best. In fact, the iceberg could not be located on either L-band
channel. W

Probability of detection values were calculated using the values
from Table 29 and the curve in Figure 40; these values are summarized
in Table 30.
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4.9 GRAPHIC DISPLAY

Perspective plots of ship and iceberg location along with the
corresponding optically-produced images are shown in Figures 41
through 44 for each of the four channels. These results are consis-
tent with the previous analysis. The ship is easily discriminated
in both X-band channels and also with like-polarized L-band. The
iceberg however, is discriminated only with cross-polarized X-band.

During the time of the overflight, surface conditions near the
ship were characterized by ice floes, 5-10 meters in diameter, with
broken slush between them, giving the visual appearance of complete
jce cover. A swell was running through the ice with a period of
about 12 seconds (185 m wavelength) and an amplitude (crest-to-
trough) of approximately 2 m.

One interesting note: At the time of this overflight, there was
100 percent cloud cover with a ceiling of approximately 1000 ft, thus
curtailing any aerial photography. This is an excellent example of
radar's all-weather capability.
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5
CONCLUSIONS AND RECOMMENDATIONS

As stated in the objectives, SAR imagery of sea ice was studied
to determine signatures for classification of ice types. Emphasis
in tnis study was placed on the analysis and evaluation of quantita-
tive measurements and parameters obtained from the SAR data sets
utilized. There are many results published [9, 13, 14, 15, 16, 17,
18, 19] from excellent research and study programs that have empha-
sized the photogrammetry interpretation approach to radar imagery of
sea ice. This approach is used in operational SLAR ice reconnais-
sance systems today. Considerable information is collected from the
study of shapes, edges, linear structure, and tonal varijations in
radar imagery. The long-term goal of this study is the realization
of a fine-resolution system with automatic classification of key sea
ice types. The general extent of the ice can be determined with
coarse-resolution SLAR systems. When it becomes important to detect
and to recognize small pieces of multi-year ice, small icebergs, and
bergy bits as wel!l as to estimate ridge height, then fine resolution
systems with (perhaps) a multi-channel (polarization and/or wave-
length) capability need to be considered. Also, it is hoped that
signatures can be determined which can classify ridging and rafting
(from which ice thickness can be inferred).

Results obtained from this study, thus far, would suggest the
selection of 3 cmn for the wavelength of an operational sea ice sur-
veillance SAR. Also, the utilization of cross-polarization (trans-
mitting horizontal polarization, receiving vertical), particularly
for steep incidence angles (such as were employed with the SEASAT
SAR) seems to be indicated. Data from the 3 cm channel provided the
best discrimination for the various ice types used; multi-year ice
with ridges, multi-year, first-year with ridges, and first-year ice
areas were separable (having decreasing values of received power),
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Comparisons of the measured values of dynamic range for the received
signal, as a function of wavelength and polarization, show the XHV

and XHH channels to have the largest dynamic range for the ice
types included in this work. The use of vertical transmitted polari-

zation should be investigated further.

Based on a comparison of the relative values of backscatter power
from particular ice types as measured using the SAR data with the
relative values obtained using scatterometer data, both airborne and
ground-based sensors show very similar values for the same areas .

The mean values of the received power from the test sites corre-
sponded to the ice roughness (i.e., ridging, no ridging, etc.) with
the largest mean value from the most rough ice (as determined from
ground truth data). Similarly, the largest s*tandard deviation mea-
sured was from the roughest ice site.

Results from analysis of the L-band channel (23 cm wavelength)
data have not provided any support for using this wavelength for ice
classification systems. However, there is a situation regarding the
Hopedale data where wet first-year ice provides strong signal returns
at 3 cm, but low returns at 23 cm. This effect has been observed by
others [ 18] and may constitute a signature with which to distinguish
this type from multi-year ice.

To fully exploit the four channels of data available in the cur-
rent data set, different analysis procedures should be investigated.
Perhaps the same sort of analysis procedure used to develop multi-
spectral scanner classification routines could be used on the multi-
channel SAR ice data. These routines could be employed to analyze
the SAR returns in the four-dimensional vector space of observations,
on an ice type-by-ice type basis. This would be accomplished through
scatter plots, statistical measures of covariance, and multivariate
measures of class separability. We would also try to characterize
the underlying multivariate distributions of the SAR returns.
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Finally, development of a discrimination procedure for digitally
mapping ice types, based solely upon the dual-band/dual-polarization
returrs themselves, would be initiated.

It is anticipated that a future SAR system could include (1)
wide-swath capability for large-area search, (2) fine-resolution
capability for a detailed study of particular sea-ice areas, and (3)
a digital-ice type classification capability, in addition to (4) a
real-time digital image processor. In order to realize such a sys-
tem, considerably more work needs to be accomplished in order to
determine and verify the sea-ice type-classification SAR signatures.
The technology, both digital and SAR, appears to be available now.

107




ERIM

RADAR AND OPTICS DIVISION

10.

REFERENCES

sivertson, £E. and R. Larson, "Space Shuttle Search and Rescue
Experiment Using Synthetic Aperture Radar," WESCON, September
1976, Los Angeles, Calif.

lLuther, C.A. and R.A. Shuchman, "Sea lce Detectability as a
Function of Resolution and Mixed Integration," To be published
in the Proceedings of the SURSAT Workshop (neld in Toronto,
June 1980).

Ausherman, D.A., W.D. Hall, J.N. Latta, and J.5. Zelenka, "Radar
Data Processing and Exploitation Facility," Proceedings IEEE
International Radar Conference, Washington, 0.C., 1975.

Rawson, R.F., et al., Digitization of SAR 77 Image Data, ERIM
Technical Report No. 303400-1-F, October 1978.

Blanchara, A.J. and J.W. Rause, Jr., "Depolarization of Electro-
magnetic waves Scattered From Inhomogeneous Half Space Bounded
by a Rouygh Surface," Radio Science, Vol. 15, No. 4, pp. 773-779,
July-August 1980.

Hawk ins, R.K., et al., "Single and Multiple Parameter Microwave
Signatures of Sea Ice," Sixth Canadian Symposium on Remote Sens-
ing, Halifax, May 1980 (to be published}).

Deecker, C.V., R.G. Onstatt, and R.K. Moore, Radar Scatterometer
Measurements of Sea Ice, Remote Sensing Laboratory Center for
Research Inc., The University of Kansas, RSL Technical Report
No. TR 331-17, August 1980.

Gray, A.L., R.0. Ramsier, and W.J. Campbell, "Scatterometer and
SLAR Results Obtained Over Arctic Sea-Ice and Their Relevance
to the Problems of Arctic Ice Reconnaissance," Fourth Canadian
Sympcsium on Kemote Sensing, Quebec City, pp. 424-443, May 1977.

Unstott, R.G., et al., Radar Backscatter Study of Sea Ice,
Remote Sensing Laboratory Center for Research, Inc., The
University of Kansas, RSL Technical Report No. RSL-TR-331-14,
February 1980.

Onstott, R.G., R.K. Moore and W.F. Weeks, "Surface-Based
Scatterometer Results of Arctic Sea Ice," IEEE Transactions on
Geoscience Electronics, Vol. GE-17, No. 3, pp. 78-85, July 1979,

Liskow, C., A. Klooster, R. Rawson, R. Shuchman, and H. Wagner,
Analysis of Georges Bank Radar Imagery, ERIM Technical Report
No. 120800-6-F, 1977.

Larson, R.W., et al., "The Use of SAKR Systems for Iceberg
Detection and Characterization," Proceedings of the Twelfth
International Symposium on Remote Sensing of Environment, ERIM,
Ann Arbor, pp. 1127-1148, 1978.

8 Ires

109
FRECEDING PAGE BLANK-NOT FILMED

v
\

S B




RADAR AND OPTICS DIVISION

DERIM

13.

14.

1s.

Dunbar, M., "Interpretation of SLAR Imagery of Sea Ice," Journal
of Glaciology, Vol. 15, No. 73, pp. 193-213, 1975.

Ketchum, R.D. and 5.G. Toomd, "Analysis and Interpretation of
Airborne Multi~-Frequency Side-Looking Radar Sea Ice Imagery,"
Journal of Geophysical Research, Vol. 78, No. 3, pp. 520-538,
1973.

Glushkov, V.M. and V.B. Komarov, "Side-Looking Imaging Radar
System TORQS and Its Application to the Study of Ice Conditions
and Geological Explorations,” Proceedings of the Seventh
International Symposium on Remote Sensing of Environment,
University of Michigan, Ann Arbor, 1971,

Rouse, J.W., Jr., "Arctic [ce Type Identification by Radar,"
Proceedings I[EEE, Vol. 57, pp. 605-614, 1969.

Anderson, V.H., "High Altitude Side-Looking Radar Images of Sea
Ice in the Arctic," Proceedings of the Fourth International
Symposium on Remote Sensing of Environment, University of
Michigan, Ann Arbor, pp. 845-857, 1966.

Ketchum, R.B., An Evaluation of ERIM X-L Band Airborne
Synthetic Aperture Radar Imagery of Sea Ice, (NOUKDA Technical
Note 28.

Rawson, K.F. and A.L. Maffett, et al., L-Band Radar Clutter
Statistics tor Terrain and Ice, ERIM Technical Report No.
128900-9-F, February 1978.

110




Enm

APPENDIX A
GROUND TRUTH FROM BEAUFORT SEA TEST SITES

Dr. Raymond Lowry
INTERA
Ottawa, Ontario, Canada




BEAUFORT SEA SAR DATA TEST SITE DESCRIPTIONS

The Final Report
of an analysis of three selected sites,
and the SURSAT SAR data collected
over those sites in March 1979.
Prepared for the
Environmental Research Institute of Michigan

by

Iintera Environmental Consultants Ltd.

Intera Report 908~81-1 January 1981

A a e

intera




PREFACE

This Final Report summarizes work done on behalf of the
Ervironmental Research Institute of Michigan (ERIM) by Intera
invironmental Consultants Ltd. (INTERA). The work toock place between
October 1979 and January 1981, under Contract Nurmber NOOO14 79 C 0698.

INTERA would like to acknowledge the support of the

Surveillance Satellite (SURSAT) Project for collection of the original

data set, and for support on some analysis referred to in this report.
In additicn, some of the digital data discussed in thir report was

nenerated under the SURSAT Program.

R.T. Lowry
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ABSTRACT

The SAR data, collected by the SURSAT Project in the
Beaufort Sea in March 1979, represented the first high-resolution,
4—channel SAR data ever oollected over multi-year and first year sea
ice.  Several sites were selected for detailed analysis, and the prime

purrose of this report is to describe in detail three test sites.

The tirst site is on smouch ice, in a shorefast zone near
The second is in the rather turbulent
transition zone, about 100 km north of the first site. The third is in
All three sites

the Tuktoyaktuk Peninsula.

the rulti-year pack ice, some 150 km farther north.

show the range of ice conditions typical of their zones.

In addition to detailed surface descriptions, both
hand-held, 35-nm and vertical 9"-by-9" photography has been collected
for the sites. The 9"-by-9" photography has heen attached in the

appendices.

An analysis of the digital Jata from the multi-year site has
been conducted.  This includes sane observations made directly on the
Giaital data, using the CCRS Irage Analysis System. Most, however, are

tasex? on the data generated by ERIM, using corrected tapes.

This analysis confirms the general distinctions that have
reen made hetween the scattering mechanisms of first year and
rulti-year sea ice at steep angles. The primary interaction in
rulti-year ice seems to be volume scattering, whereas in first year
ice, it is a surface scattering effect. At very shallow depression
angles (79), this distinction seems to be breaking down. More work

is needed to quantify these effects.
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INTRODUCTION

In March of 1979, a major field program was undertaken
through the SURSAT office, aimed at better understanding of the use of
microwave remote sensing for sea-ice reconnaissance. Numerous Canadian
and American conpanies, and governmental agencies were involved in this
work, with aircraft based in Alaska, Inuvik and Yellowknife, and a
large field party, which primarily operated out of the Polar
Continental Shelf Project (PCSP) camp at Tuktoyaktuk. The prime sensor
was the SAR-580 system, which consists of the ERIM 4—channel Synthetic
Aperture Radar (SAR) aboard the CCRS Convair 580 (Inkster et al.,
1979).

In addition to the SAR-580, both the MASA lLewis and the AES
APS-94 SLAR systems were used to collect radar imagery. The SAR-580
also wllected scatterameter and radiometer data, with coincident RC~10
photography. The test line covered by all sensors was located on the
meridian 132° W, and went from the Tuktoyaktuk Peninsula to
approximately 73° N. An additional short line was flown by some of
the sensor combinations, over Fletcher's Ice Island (T3), which was
Jrifting by the 132C0-E line at approximately 72 1/2° N, heading

east to west (see Figure 1).

The SAR-580 imagery represented a unique data set, for
several reasons. It was the first time very high-resolution, X- and
IL~band imagery (HH and HV) had been collected over sea ice with large
amounts of multi-year ice present. The ancillary data set was
exceptionally fine, consisting of (1) digital SLAR data from the NASA
Lewis APS-94D, (2) CCRS Radiometer/scatterometer data,

(3) Nunerous 9"-by-9" stereo camera flights, and of most importance,

(4) considerable on-ice data, collected by several experienced groups.

A-1
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Three SAR flights took place, on 12, 16 and 18 March 1979,
all following the line 132° E, and heading due north. On March 12th,
the X-l#i, wide swath antenna was used. An aircraft APU malfunction
. resulted in the loss of the first third of the data on the main test
line. Imagery was collected on the T3 line, however, and scatter-
ormeter, radiometer and photography data were oollected on the return

trip. The 4-channel antenna was flown on March 16th and 18th, in

"steep" and "super-shallow" modes respectively. The T3 line was flown
on the lé6th, but due to the low altitude used on the 18th, this line
had to be abandoned to save fuel. Some additional data were ocollected
over the MacKenzie Delta on March léth.
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2. THE ICE REGIME OF THE BEAUFORT SEA

The ice domain cf the Beaufort exhibits widely diverse

. characteristics. Intrinsic properties and surface appearance are
seasonally dependent, and the notable features can vary from year to
year. This section describes some of the characteristics of the ice
domain, especially as they relate to remote sensing. A number of more
detailed reviews are available (e.g., Kovacs and Mellor, 1974; Wadhams,
1975).

Typically, the southerm Beaufort is ice-covered for about
nine months annually, although for about one year in ten, the ice cover
may remain throughout the year. The ice, during the late winter at

' least, is characterized by three zones, as illustrated in Figure 1.

The landfast zone extends ocutward from the coast to about the

20-m bathymetric contour. Stabilized against movement by the presence
of grounded ridge keels out to this depth, the landfast zone annually
grows to a thickness of about 2 m. During the early summer, it
weakens, fragments, and the resulting floes either melt in the warm

southerm waters, or Jjoin the permanent Arctic Pack ice further

of fshore.

The permanent pack mainly consists of ice which has survived

previous summer melting cycles. The multi-year ice which has thus
evclved is characteristically 3 to 5 m thick, in floes which range in
size fram ten metres to (rarely) tens of kilometers. Normally, the
multi-year ice appears in a matrix of first year ice, often heavily
ridged. The major characteristic of the permanent pack ice found in
the Beaufort Gyre is its large-scale motion. On average, the ice
exhibits a clockwise circulation pattern (see Figure 1) and together
with the smaller-scale motions superimposed on it, is respongible for

creation of the third regiom of interest, the transition zone.

A-4
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The transition zone exists as an interface between the stable

landfast ice and the circulating pack ice of the Beaufort Gyre. This
zone (see Figure 1) encompasses areas where rost of the hydrocarbon
; deposits are believed to be situated. It is also the zone of maxirmum

dynanic ice interaction.

Through the winter, the ice in the transition zone is heing
transported amd transformed. Open water leads are formed under
divergent stress conditions, to be rapidly refrozen in the -20° C to
-40° C terperatures. Convergent stresses produce ridging and
rafting, particularly in the newly refrozen leads, which are thinner
and hence, more susceptible to buckling forces. Thus, a particular
region will probably contain a range of ice conditions, and thickness

and surface characteristics.

Into this region, multi-year ice from the permanent pack may
intrude. Intrinsically characterized by greater thickness and lower
brine content than first year ice, these floes often contain multi-year
ridges, hummocks, and sometimes, hummock fields. In contrast to their
first year counterparts, which are partly composed of unconsolidated

tlocks cf{ ice, these have evolved to a fully consolidated (i.e., solid)

state and, therefore, represent a greater challenge to future

operational capability.

The three zones described above are representative of the
period from December through May. During the freeze-up period of early
winter, the landfast ice normally has not developed the thickness and
strength to resist the forces imposed upon it, so the whole region

participates in the dynamic transformations occurring at this time.

The formation of new ice normally commences by mid-October in
the southern Beaufort. Freeze-up occurs first in the shallower near-
shore regions, and its evolution is governed by a number of factors,

including the heat hudget of the water column, the fresh water flow of
A-5
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the MacKenzie River and, more spectacularly, by the dynamic effects of
the winds and currents. This early evolutionary history determines the

surface properties of the ice, and seems fundamental to the appearance

of the ice in X-band radar imagery. ‘

is the ice grows, perhaps to a 30-cm thickness by early
Noverber, the dynamic effects produce rafting and subsequently, ridging
of the ice. Because of the low tensile strength and the susceptibility
to fracture, a range of thickness and surface conditions is produced
(including specular smoothness, microscale roughness and macroscale
roughness) and distributed on scales of tens of metres to several
kilometers. By mid-December, the dynamic evolution is restricted to
the transition zone, although even in the landfast zone, the surface
characteristics continue to evolve through the mechanisims of brine

migration and snow coverage.

The appearance of the ice in the transition zone, therefore,
is characterized by a range of roudghness scales (fram millimeters to
metres, and distributed over dimensions of tens of metres to
kilometers), and hy a range of thicknesses ard geometries. Sometimes,
superimposed upon this scene will be multi-year ice, which is typified

by its low, rolling appearance and smoothed ridges.

The winter of 1978-79 was not an especially hard winter for
sea ice in the southern Beaufort Sea. The pack had remained relatively
far north for the last two summers, and no multi-year ice was seen
south of 72° Ii. Satellite imagery shows the ice formed normally but
consolidated slowly, due to the effect of the so-called "trans-arctic"
high-pressure ridge. For a substantial portion of the winter, ice was
being swept to the northwest by winds. There was, therefore, no
consistent onshore wind bringing in the heavy pack. In addition, the

ice formed in the Amundsen Gulf was being carried out into the southern
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Beaufort Sea. By February, the ice in the Amundsen Gulf had
consolidated, as had that in the southern Beaufort. While there was
still movement in the southern Beaufort, it was much more constrained
and, on average, tracked the Beaufort Gyre, with winds providing the
higher-frequency movements.
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3. THE TEST SITES

Four test sites were initially selected for analysis, based
on a conbination of SAR data availability and quality, intrinsic
interest of the ice, and quality of ancillary information. Later,
this was narrowed to three sites, for ease of analysis. The T3 test
site was dropped, for lack of the shallow-depression SAR imagery. The
three remaining test sites were chosen so that one site was in each of

the three major zones described in the previous section.

3.1 THE SHOREFAST ZONE: SITE "A"

The plan for the SURSAT experiment was to deploy a series of
radar reflections at a number of sites along the test line. The first
of these sites, called Site "A", was established at 70° N, 1320 W
(using the helicopter navigation system). Subsequent sites were not
established, due to excessive ice motion. Site "A" was located on what
had been an old, and very wide shore lead. The site was approximately

35 km north of the shore, on ice that was about 1 m thick.

It is not known exactly when the ice formed, but the estimate
is that this was a shore lead that opened early in the winter (November
- Decertxr). It appears to have consolidated very rapidly, so the air
terperature rust have been quite low at the time. It has somewhat less
snow cover than ice further south or north, which is again consistent

with this theory.

3.2 THE TRANSITION ZONE: SITE "ANOMALOUS"

This site, less than 100 kmn north of Site "A", was covered
with first year ice that was very rough. It was selected for
investigation bhecause on the SLAR imagery it appeared to be much more
reflective than normal first year ice, and was thought to be

multi-year ice. Investigation revealed that this was some of the
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ice from the Amundsen Gulf, which had been broken up by wind and wave
action when it was 20 to 30 an thick. The surface truth is 35-mm

photography fram the ground and fram a helicopter, plus field notes of
the SURSAT party. Its significance is that it demonstrates the range

of signals that can result from first year ice in this zone.

3.3 THE PERMANENT PACK ZONE: SITE "II"

This site was selected, in spite of there being no surface-
truth data, because the airborne data set was complete, and because the
ice presented many very interesting features. Located at the southern
edge of the permanent pack, it showed a rather well-defined edge, which
is illusionary. There was a considerable quantity of multi-year ice
just south of this area, and both large, multi-year floes and very
srall, multi-year fragments in the scene, shown on low-level, 9"-by-9"
photography. It was, therefore, particularly suited for obtaining
signatures of all the different ice types, as well as studying the

Jetectability of small, multi-year pieces in a first year matrix.
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4. DETAILED SITE DESCRIPTIONS

4.1 SHOREFAST ICE ZONE

The Site "A" reflectors (see Figure 5) show very clearly on
the SAR imagery, and mark the location exactly, as can be seen on both
Figure 2 (X-ifi, 16-3-79) and Figure 3 (X-HV, 18-3-79). The effect of
depression angle is quite marked, particularly for angles of 45° or
more and 5° or less. At steep angles, the surface of the ice, which
is relatively smooth and uniform on the 9"-by-9" photography (see
Figure 4), shows tonal variations that are related to the way the ice
originally started to form. The slight snow cover, which is studk to
the ice surface because of salt migrating up into the snow, shows very
definite texture (see Figure 6). Typically, the ice will have such a
surface layer, later covered by snow which will be blown about by the
wind (see Figures 7 and 8).

The salinity of the ice normally will be in the range of 5 to
10 ppt, depending to a large extent con how fast the ice freezes. The
surface layer will be very much more saline (100 ppt or nore), and will

be covered in frost flowers before snow covers it.

Figures 9 and 10 show the new lead that opened after the
9"-by-9" photography was taken, but before the SAR was flown.
Optically, it appears quite light, due to these frost flowers. It also
scatters strongly at X-band, but not at all at L-band. As soon as snow
falls on this ice, salt migrates up into the snow. Core samples, with
the snow layer intact, were taken at Site "A". A typical salinity
profile is shown in Table 1, with the snow having salinities almost
three times higher than the ice helow it.
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Figure A-2
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Figure A-4 9"-by-" format vertical photography from 7000' AS. Scale is
1:14 000, showing the Site "A" reflector array, and the
refrozen lead.
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»  Removed before

+%* SAR 580 flights

All reflectors are level
on the ice, and

aligned to be viewed
from the 360° True
Size 3 flight line.
Radar
viewing Size 4
direction
153° True
Reflector Size Diagonal Dimension Edge Dimension

1 1.66 m 1.17 m

2 1.07 m 0.76 m

3 0.715 m 0.51 m

4 0.535 m 0.38 m

Figure A-5 Site "A" reflectors.
A-14
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Figure A-6 Radar reflectors at Site "A", 79-3-4. Shadows indicate N.
The reflectors were moved, and one large reflector was
removed on 79-3-6, to the locations shown in Figure 5.
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Fluff layer

A-16

is quite drv, has no salt content, and is very cold.

Typical snow cover on shorefast ice, 79-3-4.
later blew away.

Figure A-7




Figure A-8 Ice surface of typical shorefast, undeformed ice.
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Figure A-9 Photograph taken 79-3-14, looking SSE from N of 'new' lead.
The lead is covered with "snow flowers",
N
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Figure A-10 Snow flowers that have formed on ice, approximately seven
days old. There is no snow cover, and the air temperatures
have been below -250 C the entire time. The ice surface is
covered in a layer of slush (salinities of 100 ppt), and is
at about -1000 C. The scale is approximate, since it was
taken from 1 m, with a hand-held, 35-mm canera.
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Table A-1 site "A" salinity samples.

# Depth (cm) Salinity PPT
ss. 1 -3 1.5 9.2
ss. 2 -1.5 0 26,2

1 0-2 28.2

2 4 9.5

3 6 8.5

4 8 6.8

5 10 7.0

6 12 7.0

7 14 8.5

8 16 8.7

9 18 10.0

10 20 9.9

11 22 leaked

12 24 8.8

13 26 8.9

14 28 9.4

15 30 8.8

16 32 8.7

17 34 8.1

18 36 8.2

19 38 8.3

(to 75 cm exists)

Ice depth was approximately 100 cm on 79-3-6, and was growing at

about 4 cm/week.
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The snow also forms an insulating layer, which generally
means that the surface of the ice -is warmer than the air. It is
unusual, therefore, to find the surface temperature below the eutectic
temperature for a brine solution. This means there will always be
brine in the snow-ice interface, so that little or no radar energy will
be returned fram the ice itself, but rather frum the snow-ice
interface. This is distinctly different from multi-year ice, where
the brine has been leached out.

Comparing Figures 2 and 3 (SAR) with Figure 5 (vertical
photography) shows that the SAR distinguishes all the salient features
on the ice. Typical is the refrozen lead just north of "A". The rubble 1
associated with this feature was built up when the ice fractured along
this line and began to work back and forth. i
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3.2 TRANSITION ZONE

This site was selected for detailed investigation by the
SURSAT ground-truth team, hased on an analysis of the data collected by
the NASA Lewis SLAR. A particular ice floe was noted as having a
signature very near that of multi-year ice. The main helicopter, (a
206) was not capable of reaching the main multi-year pack, but oould
fly to this feature, so an investigation was launched. It was found
not to be rulti-year ice at all, but merely very rough, first year ice.
This serves to illustrate that classification based on tone alone is
very dangerous. The higher-resolution SAR imagery was very clear, and
based on texture and tone, a correct identification was made. The

anomalously high return gave this site its name.

Between the 16th and 18th of March, the multi-year pack had
shifted, and the flight lines were different, due to navigational
system drift. For whatever reason, the image swaths are not identical.
Figures 11 and 12 show the site imaged on the 16th and 18th
respectively. To aid in correlating the images, a point "A" has been
shown on both. The field party landed, and made on-site odbservations
at approximately the point shown on Figure 12. This area is not
properly imaged on the March 16th pass. Figures 13a and 13b are
typical images, taken frar a position on the ice, using a 35-mm camera
with a 50-rm lens. The general rough texture of the surface can be
seen. It should be noted that the ice was 20 to 30 an thick when the
ruthle was created, but the general thickness was greater than 1 m (the
length of drill carried) and it was fully consolidated. This can be
dermonstrated by observing that the ridge, noted as "B" on Figure 12,
cuts right across ice features of very different tonal character. This

ridge formed when the ice had oonsolidated as a sheet.
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Figure A-11
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Figure A-13(a & b).

Photography taken while standing on the ice, using
a 35-mm camera, with a 50-mm lens. Note the
continuously rough surface, composed of rubble
thrown up when the ice was 20 to 30 cam thick.
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The importance of th%s site is that it demonstrates the
widely varying surface texture that can be found, even in highly
consolidated, first year ice. If it is further noted that ice, dating
from freeze-up to the most recent moment, can be found at almost any
time in the transition zone, the need for skilled interpreters and

high-resolution imagery is demonstrated.
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4.3 PERMANENT PACK: SITE "II"

During the summer season, the multi-year ice becomes largely
desalinated. In particular, the surface layer of high salinity,
typical of first year ice, disappears entirely. The effect of this is
to allow much rore penetration of radar energy and, particularly with
X-hand, this results in a strong, volume scattering effect. The effect
is very pronounzed in Figure 14, which shows the X-lIV return. The
large, rulti-yvear floe noted has considerable surface texture, which is
related to the pattern of melt ponds and drainage patterns set up
durinag the summer. Rubble created by grinding against multi-year ice

is even brighter than first year rubble, at X-1IV.

Line "A", parallel to the SAR flight line on Figure 14,
rarks the photography flight path followed by the SAR~580 on March
16th. This low-level photography constitutes a suitable ground-truth
record for all but the most unusual ice features. Unfortunately, the
imagery from March 18th is shifted west, so the photography only covers
the very edge of the scene. Figure 15 shows the location of the
photography line at "A-A", on the very edge of the ocoverage.

A comparison of X- and I-band shows why L-bamd is very
unpopular for ice reconnaissance; no tonal information on undeformed
ice is seen. It is assumed that the scale size of the granularity in
multi-year ice is such that no volume scattering takes place at L-band.
The large, multi-year floe noted can be distinguished only by its
peripheral ridages on the L-band. In the same manner, small, multi-year
kits, seen clearly on X-band, are poorly distinguished on I~band,
unless they are accompanied by a large ridge or rubble pile.
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Figure A-15
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This site is very important because it allows a detailed
assessment of the ability of SAR to distinguish ice of different ages.
In general, l~band gives no useful information that is not present in
the X-band (4-channel registered scenes have been made to verify this).
X-H\ has a reore expanded dynamic range than does X-Hll, which better
distinguishes the different classes of ice. This may not be an
advantage, as the separation is adequate at X-HH, but the dynamic range
is alrealy too large for photographic prints. X-HV is, therefore, even
more difficult to print adequately.
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5. AVERAGE RADAR CROSS-SECTION STUDY

A simple study was undertaken, on the shallow-depression data
fram 18 March 1979, to provide corroboration for the more detailed work
being conducted at ERIM. The analysis was conducted, using the CCRS
Image Analysis System (CIAS) Radar Analysis package (Lowry et al.,
1978). First, the data frum all four channels were registered, then,
using the cursor, average and standard error (SE) values were
calculated for the cursored pixels. No attempt was made to
radiometrically correct the data, and all were left in the square root
form in which they were generated. The analysis was conducted, using
the data at the approximate centre of the image (approximately 7°

depression angle) to minimize radiometric variations.

The majority of the data presented here were generated, using
data at the provided resolution (3 m). As a validity check, however,
on both the technique and the basis data, similar tests were done on
files which had been reduced in size by a factor of 3 by 3 (9 looks),
or 6 by 6 {36 looks), by multi-locking (see Lowry et al., 1978) in the
geometric correction routine. The 36-lock data were also median
filtered and the tests repeated.

Four classes of ice were selected by an experienced ice
observer. These were smooth and deformed first year ice, and smooth
and deformed multi-year ice. It was felt that further division into
more categories was not justified with these data. The results of this
analysis are tabulated in Tables 2 and 3. Comparison with the nore
complete results generated by ERIM, using the hybrid system, shows that

the results are very similar. This is most reassuring.
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Table A-2 (CIAS data for four classes, shallow depression.

Class 1

Class 2

XHV

Class 3

Class 4

Undeformed

Site 1

94.3 (47.9)
70.6 (35.6)
44.0 (24.5)
28.9 (14.7)

First-Year Ice Mean
Site 2 Site 3
21.4 ( 7.3) 25.3 ( 7.5)
14.9 ( 4.5) 16.8 ( 4.4)
11.8 { 4.0) 14.4 ( 4.4)
13.7 ( 3.3) 14.0 ( 7.5)
First~Year Ice Mean
Site 2 Site 3
68.9 (39.4) 71.4 (33.1)
26.8 (10.9) 55.7 (24.1)
31.0 (16.8) 32.5 (18.1)
19.7 ( 6.7) 26.4 (10.9)
Multi-Year Ice Mean
Site 2
46.6 (39.4)
22.2 ( 7.9)
13.7 ( 4.7)
13.7 ( 3.8)
Multi-Year Ice Mean
Site 2 Site 3
89.3 (42.8) 98.9 (49.6)
73.0 (40.0) 60.4 (32.6)
56.3 (34.9) 45.9 (24.3)
35.7 (20.3) 34.8 (20.5)
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Table A-3 CIAS data for four classes of various resolutions for shallow
depression.

Malti-Year Ice Undeformed
1 2 3 4
Average of
3x3m, 1 look 9x9m, 9 look 18x18m, 36 look  18x18m, 36 look
Median Filtered
47.6 (20.5) 45.2 (13.7) 46.8 ( 9.5) 44,1 ( 5.1)
22,9 ( 8.2) 21.2 ( 5.8) 21.7 ( 3.9) 20.6 ( 2.3)
13.3 ( 4.5) 12.9 ( 3.0) 13.3 ( 2.1) 12.6 (1.7)
13.7 ( 4.0) 13.0 ( 2.3) 12.9 ( 1.5) 12.7 ( 0.8)
G6II Files
1 2 3 4 5
Multi-Year Multi-Year First-Year First-Year First-Year
Deformed Undeformed Deformed Deformed Undeformed
61.5 (20.7) 46.8 ( 9.5) 36.3 (16.4) 35.2 (14.4) 23.7 ( 3.7}
44.1 (17.0) 21.7 ( 3.9) 16.1 ( 3.9) 14.7 ( 2.7) 14.0 ( 1.8)
22.9 ( 8.5) 13.3 ( 2.1) 14.5 ( 5.5) 14.7 (4.8) 13.4 ( 1.8)
19.4 ( 6.7) 12,9 ( 1.5) 3.9 (5.2) 6.4 ( 6.1) 13.2 ( 1.6)
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An analysis of the data from Site "I1", taken on the ERIM
hybrid optical-digital processor, has been done. Four sites were
selected to represent the four categories that have been outlined
above. These are sites G, D, F and E, all on file B2. The results are
re-tabulated in Table 4a for bhoth steep (approximately 50°) and

shallow (approximately 7°) depression angle data.

Examination of the deta in Table 4a shows that all
single-channel data increase i1 magnitude from first year undeformed,
to first year deformed, to multi-year undeformed, to multi-year
deformed ice. At shallow angles, the contrast hetween the types is not
greatly different on the two channels. At steep angles, however, the
cross-polarized channel shows much greater separation of the classes
than does the like-polarized. This has been a constant result of work
with steep depression-angle scatterometer data. It is clear that the
scatterometer data do not extrapolate easily to shallow angles. The
contrast stretch of the cross-polarized channel, compared to the
like-pclarized channel, is a good example of this point.

A sirple analysis of the depolarization effect has been
conducted. By assuming that the cross-polarized chamnel represents
isotropically scattered data, and that the like-polarized term is the
sun of a reflected and isotropically scattered term, a reflected term
can he calculated by subtracting the cross-polarized from the like-
polarized term. We can thus examine the ratio of reflected-to-
scattered power. This is meaningful, both from the point of view of
understanding the mechanisms of radar returns fram ice, and designing a
classifier for ice. I~band data have been discarded because they are
not anticipated to he available in the future, due to their limited
utility.
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Table A-4. a) ERIM X-band data for four classes of both shallow (7°) and
steep (507) depression angles.
X-HH X~HV X-HH X-HV
Site Shallow Shallow Steep Steep
G 14.9 10.5 54.4 18.9
D 22.2 11.5 56.0 21.6
F 33.1 15.1 67.1 56.8
E 43.5 31.5 68.8 62.0
Table A-4 b) The ratio of reflected to scattered X-band data for both
steep and shallow depression angles.
Site R/S Shallow (7°) R/S Steep (50°)
¢] 0.42 1.9
D 0.93 1.6
F 1.19 0.18
E 0.38 0.11
SITE LEGEND
G Undeformed first year ice
D Deformed first year ice
F Undeformed multi-year ice
E Deformed multi-year ice
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Table 4b shows the results of calculating the mean
reflected-to-scattered power ratio for the four classes under study.
Obviously, the absolute values of these numbers are subject to
considerable error, as these are not calibrated data. Considerable
care, however, has been taken at ERIM to ensure that the relative
values are meaningful. 1n this respect, the CIAS data cross check is

again very reassuring.

The steep—depression data are easily interpreted. In first
year ice, the surface reflections dominate, even when there are
considerable numbers of ridges present. The ridges, if viewed
separately, using the screen on the CIAS, show these numbers to he
correct. That is to say, at steep depression, the undeformed first
yvear ice shows contrast similar to deformed first year ice on both
like-polarized and cross-polarized channels. The very strong response
of the nulti-year ice, both deformed and undeformed at steep depression
ancles, is largely due to the scattered return. This is in line with
current thinking, which says that the return fram multi-year ice is

largely associated with a wolume scattering mechanism at X-band.

In contrast to the highly saline first year ice, nulti-year
ice is very permeable. The structure is very non-uniform, both in air
content (dielectric constant) amd brine content {(loss tangent). It is
for these reasons that this theory is widely accepted, and it seems
quite applicable for the steep—depression data. For undeformed ice,
scattered energy dominates. This is oonsistent with the return being
due to small features, of the order of the wavelength (by the sine of
the angle), which scatter largely. It is acceptable, if a little
surprising, that this is the process.
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The rough first year ice shows equal response of the two
mechanisms, which seems very reasonable. First year rubble has a great
many sharp corners, but a great many flat facets as well. What are

surprising are the shallow-depression ratios of R/S for multi-year ice.

For undeformed ice at shallow angles, the dominant effect is
reflection. At this time, the author can put forward no good
explanation for this. The surfaces of old floes, as represented here,
are covered in gently rolling humwocks of about 1/2 to 1 m in height,
and some 5 to 20 m in scale. Typically, they do not have facets
protruding sharply fram the surface, and have low salinities. One can
only assume that these undulations must be clearly visible, even at
7© depression angle, and that they reflect strongly from the surface
of the ice. Little energy returns to the radar via refraction from

sharp edges or from volume scattering.

The cross-polarized ratio for deformed multi-year ice, when
compared to deformed first year ice, shows the greater importance of
scattering effects in multi-year rubble. BAgain, this can be ascribed

to greater volume scattering.

A comparison of the reflected data for steep and shallow
angles 1is shown in Table 5. The difference between first year and
rulti-year ice is striking in the reflected component. Except for the
undeformed multi-year ice, however, no change is seen for the scattered
ratio. Again, this emphasizes the relative stability of signatures in
the scattered channels, and the rather odd response of undeformed

multi-year ice at very shallow angles.
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Table A-5 Reflected and scattered power ratios for steep and shallow

Site

data.

R Shallow/R Steep

0.12
0.28
1.75

1.76
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0.56

0.53

0.27
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6. CONCILUSIONS

I ground-truth report for the three selected sites has heen
prepared, and some analysis has been conducted. The sites show the
remarkable range of radar reflectivity that can be dbserved in new ice.
Both the reflection and scattering mechanisms are variable for
first-year ice. Multi-year ice shows a tremendous signature variation
as well, but is relatively more stable than first year ice. It is also
easy to distinguish multi-year ice from first year ice if both X-HH and

X-HV data are available.

The analyzed data set, while very exciting, is incomplete.
Firstly, the range of temperatures over which data were collected is
very narrow. Secondly, the range of depression angles over which
coincident data are available is limited to the two extremes. With the
limitations noted, the results are nonetheless very exciting, and may
well lead to further work.

A-39

- Cr R b i

intera




7. REFERENCES

Inkster, D.R., R.K. Raney, and R.F. Rawson. 1979. State of the art
in airborne imaging radar. Proceedings of the 13th International
Symposium of Remote Sensing of Environment. 361-381.

Kovacs, A., and M. Mellor. 1974. Sea ice morphology and ice as a
geologic agent in the Beaufort Sea. Ed. J.C. Reed and
J.E. Sater. Arctic Institute of North America, Arlington,
Virginia. 113-161.

Lowry, R.T., S. Shlien, ard D.G. Goodencugh. 1978. Proceedings of the
Sth Canadian Symposium on Remote Sensing. Victoria,
British Columbia. 363-372.

Wadhams, P. 1975. Sea ice morphology in the Beaufort Sea. Technical

Report No. 36, Beaufort Sea Project, Department of the
Environment. Victoria, British Columbia.

™ A-40

intera




8. APPENDICES

Mppended to this report are two sets of photographs. They

are described below.

8.1 APPINDIX 1

This series of 9"-by-9" vertical photography was taken on
7-4-79 by Gulf Canada Ltd. The reflectors at Site "A" are shown.

8.2 APPENDIX 2

This series of 9"-by-2" vertical photography was taken from
the Convair 580 on 16 March 1980. The ice at Site "II" is shown.

-
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SUMMARY

The interpretation of the digitized ice regions
of the SAR "77" imagery was done using transparencies
provided by C-CORE. The analysis was carried
out on all four bands for each digitized area
using a comparator as an aid. Ground truth inform-
ation from the Hopedale and Ship in the Ice reports
was used as an aid where possible.

In the near shore sites where there was actual
ground-information collected the interpretation
was based on this data. However, in the offshore
areas, where there was no ground information other

than oblique air photos (Fig 31 A), the interpretation
was based on experience in ice feature recognition
and general observations taken from the reports.
The only exception to this was the ship area which
has recorded ground information during the overpass.

Three basic ice types were identified within
the digitized areas. These were new ice, first
year ice and ice ridges. (Multi-year ice can be
identified on SAR imagery however there are no
pieces evident within the digitized areas).

Fast, first year ice with ridging predominates
the digitized areas which are close to shore (sites
3,4, and 7 and site between 7 and 15). Offshore
regions gontain floes, pancake 1ice, large leads
and show evidence of swell action.




In certain areas such as the strip between
site 7 and 15, the poor quality of the imagery
| prevents any detailed analysis. (Fig 23). In
sites 3,4 and 7 the digitized areas on the X-
band do not correlate exactly with those on the
L-band imagery as shown in Fig 1. Ridges and
hummocking can be identified by the high return
areas (speckle pattern). Finger rafting on new
ice can be identified easily within area 'C"
Fig 15. The zig-zag pattern on the smooth surface
is the clue for identifying this feature.

Dynamic ice is evident in Area "B" Fig 11

as is shown by the fracturing in the large floe.
In area '"C" the ice shows definite patterns in
ridging. This is due to compression of the ice.
The low return areas are areas of low compression
whereas those areas which show considerable ridging
are highly compressed. In Fig 31 the ice shows
swell patterns. Areas where swell pattern is
suppressed are areas where the 1ice 1is closely
packed (compressed) as is shown in the area just
ouside the upper 1left boundary of the digitized
region.

The relevant ground truth data is recorded
in Table I and the details of interpretation
are lisited by area in Table II.

i




Table B-1

GROUND TRUTH DATA

SHIP ARFA -Sea Cakes
-Small floes-2-20m
~Ocecan swell & pulp ice
-first yecar fast ice
-iceberg

SITE 3 ~-first yecar fast ice
-Snow covered

SITE 4 ~-first year, fast ice
-young ice
-rafted & ridged ice

SITE 7 -first year fast ice
-new ice

SITE BETWEEN -Transition zone between fast ice & open water

7 & 15
B-1




SITE
A(UFIGT

A { FIG 6)

CC FIG 15)

J TCERERG

SHIP AREFA

4

Site belve
/7 & 15

B ( FIG 11}

DETAILS OF INTERPRETATION Table B-2
~first year ice T

-new ice

—-unconsolidated floes

-leads

-speckle pattern on image

indicated ridging or hummocking

-the small leads show formation of new ice

-first year ice .
-unconsolidated floes
-freshly refrozen floes

~first year ice
-the large lead is what was once a large floc

the solid line indicated the boundary between

the large floe and consolidated small floes

this arca of small floes is spotted with polynyas.
-first year ice A

-ridges

-rafting on the new ice

~the darker arcas on the left of the image are
arcas of much less ridging

~-first year floes

-unconsolidated first year floes
-3 large leads

-onc iceberg

-sca swell is also evident

~-first year unconsolidated flocs
—occan swell evident

—~iceberg in areca

-ice cakes

-this is an arca of fast, first ycar ice
-the speckle pattern is the result of ridging
- snow covered

-fivst year fast ice, floes
y >

Steinoe ridaing

-~ e

~first year fast jce with ridges

-new fee

STt yoem
Ssue bl leads
Stransition zone between fast ice & open wates

B-2
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ER'“ RADAR AND OPTICS DIVISION

APPENDIX C
HISTOGRAMS FROM BEAUFORT SEA ICE DATA

A number of histograms showing the distribution of received sig-
nal amplitude for several ice types are included in this Appendix.
Each histogram is a graph of the percent of total samples versus re-
ceived signal amplitude. Histograms from each of the four channels
of the X-L SAR are given for each ice type. Three distributions
(normal, lognormal, and gamma) are given on each histogram as best
fits to the distribution based on the empirical data. The symbols
used in each figure for the various distributions are: normal (:),
log-normal (0), and gamma (X).

Several sets of histograms are given for each of the following

ice types:
Page

Site Ice Type Shallow Steep
B1-A, B1-D Medium first-year with ridging C-2, C-6 c-3, c-7
B1-B, B1-F  Young ice with ridging C-4, C-8 c-5, c-9
B2-A, B2-F Multi-year with ridging Cc-10, C-13 C-14
B2-E Multi-year pieces with hummocking C-11 C-12
82-1 Multi-year with hummocking C-15 C-16
B2-A Multi-year with ridging and c-17 _—

effects of resolution

c-1
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